
AN EVOLVABLE MESHING TOOL THROUGH A
FLEXIBLE OBJECT-ORIENTED DESIGN

Maŕıa Cecilia Bastarrica Nancy Hitschfeld-Kahler

Computer Science Department, Universidad de Chile
cecilia@dcc.uchile.cl nancy@dcc.uchile.cl

ABSTRACT

There are many diverse algorithms for generating a first mesh, refining it and improving it. A tool that allows us
to interchange these algorithms according to the requirements of the problem at hand and also to incorporate new
algorithms, needs to be flexible. This paper presents an object-oriented design approach for a meshing tool that
provides these flexibility features by encapsulating processes as objects. It also shows how some already published
application examples can be easily generated by combining these encapsulated processes. This achieved flexibility is
a typical case of software component reuse, so all the knowledge of this area can be applied.

Keywords: meshing tools, object-oriented design, software engineering, software reuse

1. INTRODUCTION

Software engineering has grown to become a mature
area in computer science over the last 30 years; it deals
with techniques, methods and methodologies for devel-
oping good quality software. Developing complex soft-
ware requires a software engineering approach, other-
wise development usually gets out of control.

Software reuse is a trend in software development that
promotes productivity and high quality. Software al-
ready developed and used can be incorporated in new
systems taking advantage of the savings in develop-
ment time and costs, and also counting on the proper-
ties of the reused parts [1]. Complex systems could get
the most out of software reuse: very sophisticated al-
gorithms need to be developed only once, highly qual-
ified people are paid for doing the work once and then
it can be reused in several products, and debugging is
mostly reduced to the task of integration tests because
integrated components are already tested. Meshing
tools are a very clear example of complex systems that
could be benefited with this approach and it is shown
in this paper. It is not usual in meshing tool develop-
ment to have a software reuse approach. This would
allow developers to identify components that are com-

mon and potentially reusable in successive versions
and also in different but related products.

The development of meshing technologies has become
an intense theoretical and practical research area. The
study of mesh generation issues, initially tackled by
engineers, physicists, end-users in general and some
mathematicians, has become also a field of interest
for computational geometers, computer scientists and
interdisciplinary teams both in academic and applied
research centers. For an introduction to these topics
see [2, 3, 4] and the proceedings of the twelve annual
International Meshing Roundtable conferences that,
since 1992 gather together researchers and developers
from industry, academia and US government labora-
tories.

In spite of its complexity, and perhaps due to its com-
plexity, only in the last years the development of mesh-
ing software has been researched from the software
engineering point of view mainly applying object ori-
ented design and programming. Some of the interest-
ing published work include the development of a soft-
ware environment for the numerical solution of par-
tial differential equations (Diffpack) [5], the design of
generic extensible geometry interfaces between CAD

modelers and mesh generators [6, 7, 8, 9], the design of
object-oriented data structures and procedural classes
for mesh generation [10] and the computational ge-
ometry algorithm library CGAL [11]. More recently,
preliminary discussions on the use of formal methods
for improving reliability of mesh generation software
have also been published [12].

Several techniques for the refinement and improve-
ment of meshes in two and three dimensions have been
considered in the last 20 years. In particular, the
use of two related mathematical concepts (the longest-
edge propagation path of a triangle and its associated
terminal-edge), have allowed the development of algo-
rithms for dealing with general aspects of the trian-
gulation problem: triangulation refinement problem,
triangulation improvement problem, and automatic
quality triangulation problem [13, 14]. These mesh
concepts have been later applied for the improvement
of obtuse angles [15, 16], as well as for the generation
of approximate quality triangulation [17].

In this work we take advantage of our research ex-
perience in the field of meshing, which includes the
development of algorithms and of several prototypes
tested in an academic setting [15, 16, 17], as well as
the development of an object-oriented mesh generator
for semiconductor device simulation [18]. All these in-
dependent efforts are combined in the flexible tool we
are presenting.

This paper describes the design of an object-oriented
meshing tool for the generation of 2D triangulations
based on the Lepp-concept. One of the most impor-
tant requirements of this mesh generation tool is ex-
tensibility on all the aspects that can evolve over time:
strategies for the generation of an initial mesh, new re-
finement and/or improvement algorithms based on the
Lepp-concept, criteria for refinement or improvement
of a mesh, and strategies for the generation of the final
mesh. Several successful applications were built based
on this design. The system allows the user to select
which strategy he/she wants to use for each mesh gen-
eration step. Software developers are able to add a
new strategy, criteria or region shape by modifying
very few parts of the source code.

Section 2 clearly states and explains the reusability
and flexibility requirements for the meshing tool. In
Section 3, the complete tool development cycle is de-
scribed: the methodology, analysis and design, and
implementation. Section 4 presents two already pub-
lished examples, now addressed with the presented
tool. In the 5 Section, some of the results based on
software engineering concepts are presented, as well
as a discussion and a description of our ongoing work.

2. EVOLUTION AND REUSE

2.1 Software Product Lines

Software reuse is becoming more important in soft-
ware development because of the big gains both in
productivity and quality. Reusing part of the soft-
ware already developed for other projects makes the
new project simpler because it will have fewer new
parts developed, and because we can also count on the
quality of already developed, tested and used software.
Software classes or components are the most obvious
items to be reused, but all the other artifacts built in
the software development process can also be reused,
e.g. test cases, user interfaces, user manuals, software
architecture design, requirement specifications.

Software product lines (SPL) is a modern approach
towards software development based on planned mas-
sive reuse. All elements subject to reuse are called
core assets of the SPL. So, an SPL is a set of prod-
ucts that are built from a collection of core assets in a
planned manner and that satisfies the needs of a mar-
ket segment [1]. Opportunistic reuse does not usually
work [19]; thus, assets in a SPL should be developed,
tested, documented, classified and stored in such a way
that reuse is promoted. This development process is
evidently longer and more expensive than developing
one product at a time, but if assets are reused enough
times, it is still cost-effective. Experience has shown
that the costs of developing reusable assets is paid off
after the second or third product is built [20].

2.2 Flexibility Requirements

This section describes the main characteristics and re-
quirements of our mesh generation tool. Our effort
was oriented towards generating an extensible 2D tri-
angulation tool, but the design here described can also
be adapted and extended for the generation of mixed
elements or quadrilateral meshes. In addition, the gen-
eral tool design is completely independent of the space
dimension (2D or 3D).

The main steps of the mesh generation process can be
summarized as follows:

• generation of an initial mesh that fits the device
geometry;

• generation of an intermediate mesh that satisfies
the density requirements specified by the user;

• generation of an improved mesh that satisfies the
quality criteria;

• generation of the final mesh.

The algorithms for generating an initial mesh receive
as input the geometry of the domain and generate the
initial mesh as output. We are interested in both, ini-
tial triangulations that satisfy the Delaunay condition
and initial triangulations that do not satisfy this con-
dition. The initial mesh is the input of the step that
divides coarse triangles into smaller ones until the cri-
teria specified by the user are fulfilled. The refined
mesh is the input to the improvement algorithm. The
user specifies several regions with their respective re-
finement and/or improvement criteria. We are inter-
ested in refinement and improvement algorithms based
on the Lepp-concept [13]. A proper final mesh might
have additional requirements that are always applied
to the whole mesh. For example, the elimination of
boundary/interface obtuse triangles is applied if the
finite volume method is used. This step can also be
empty.

The main motivation of this work is to develop a scal-
able system that can easily evolve in the following as-
pects:

• strategies for the generation of initial meshes;

• strategies based on the Lepp and terminal-edge
concepts;

• refinement and improvement criteria;

• strategies to generate proper final meshes;

• shape of the refinement and improvement regions.

The incorporation of each new strategy, criterion or
region shape should normally not modify at all the
source code, or should, in the worst case, have a min-
imal impact.

3. TOOL IMPLEMENTATION

3.1 Methodology

One of the most difficult problems in the development
of a large object-oriented software system is the orga-
nization of the complex relationships that exist among
objects in the application domain [21]. The object
relationships can be inheritance, aggregation, associ-
ation and use. Objects with a similar behavior are
grouped into types and they are known as instances of
their types. Subtyping allows the developer to build
good type hierarchies. This is implemented in pro-
gramming languages through the concepts of classes
and inheritance. The idea is to model first the most
general concepts in term of types, and then subtypes
are used for concepts that are a specialization of a
type. The most natural way to recognize subtypes are

subsets. Some authors [21] recommend the use of in-
heritance only under the subtype relationship. Other
authors also recommend the use of inheritance under
generalization, limitation, variance and reuse; this last
approach is not followed in our work.

Our design follows these guidelines: (a) the use of
types and inheritance for achieving software that is
easy to maintain, extend and understand [21] (b) the
design of good classes according to [22], and (c) the
identification of design patterns previously used in
other applications [23].

3.2 Analysis and Design

The core object of our system is the mesh. We have
decided to model the mesh object as a container of
the mesh information. The Mesh class should contain
the information about the mesh at hand; in our appli-
cation it is a 2D triangulation composed of vertices,
edges and triangles. As part of its interface, the Mesh
class should provide methods to access its contituent
elements, to load a mesh from a file, to store a mesh
in a file, and some mesh validation methods. Vertex,
Edge and Triangle are also modeled as classes; each of
them providing their most concrete/ad-hoc function-
ality and also providing access to neighborhood infor-
mation within the mesh as part of their interface. For
example, the Vertex class contains the Point coordi-
nates and provides access to its coordinates and the
list of Edges that share this vertex. The Edge class
contains its endpoints and provides operations to get
its endpoints, to compute the edge length, to insert a
point between its endpoints and to get the triangles
that share it. The Triangle class contains its vertices
and edges, and provides operations to get its vertices
and edges, to get the longest edge and to compute the
minimum angle, among others.

The key decision is then how to organize the com-
plex processes associated to a mesh such as generating
an initial triangulation, and the refinement and im-
provement strategies, among others. Should they be
included as methods in the Mesh object or handled as
separate types? Should the refinement/quality crite-
ria be modeled as separate types or should they be a
method of the Triangle object?

We have decided to handle the mesh generation steps
as separate types because (1) there are several ways
to implement the same proccess and we want them to
be interchangeable; (2) our software should be extensi-
ble to incorporate new strategies and criteria by doing
very few modifications to the source code.

We have identified four processes: (a) Initial mesh al-
gorithm, (b) Refinemen algorithm, (c) Improvement-
algorithm, and (d) Final mesh algorithm. Algorithms
(b) and (c) apply a criterion over a region of the do-

main and in our case, both processes are subsets of
what we have called Lepp-based algorithms. Thus, we
have built an abstract class called Lepp based algo-
rithm, whose subclasses are the refinement, improve-
ment and approximate improvement algorithms. Pro-
cesses (a) and (d) are also implemented as abstract
classes and the different strategies for each process are
implemented as subclasses. Each process has a Dum-
my algorithm as a subclass in order to be able to cre-
ate objects that do nothing. These objects are created
and used by default whenever the user wants to skip
one of the mesh generation steps.

Figure 1 shows the class diagram that represents differ-
ent algorithms to generate an initial mesh: one sub-
class is to generate Delaunay meshes and the other
to generate any triangulation. Since there are sev-
eral algorithms to generate Delaunay triangulations,
each one should be added as a subclass of Delau-
nay mesh algorithm. In a similar way, there are sev-
eral algorithms to generate any triangulation and each
one should be a subclass of Mesh algorithm. Each sub-
class must implement the virtual method Apply, which
receives as input the geometry of the domain and an
empty mesh object, builds the corresponding initial
triangulation and adds the vertices, edges and trian-
gles to the mesh object. Notice that there is also a
Dummy mesh algorithm that does not really generate
an initial mesh, but it allows the user to read an al-
ready generated initial mesh; in this case the tool is
used only for improving and refining this initial mesh.

Initial_mesh_algorithm

Delaunay_mesh_algorithm Mesh_algorithm

|| void Apply(Mesh* , Geometry*)

|| void Apply(Mesh* , Geometry*)|| void Apply(Mesh* , Geometry*)

|| void Apply(Mesh* , Geometry*)

Dummy_mesh_algorithm

Figure 1: Class diagram for the initial mesh algorithms

Figure 2 shows the class diagram that repre-
sents all the Lepp based algorithms. Our ap-
plication includes the Refinement algorithm, the
Delaunay improvement algorithm and the Approxi-
mate improvement algorithm. Each subclass must im-
plement the virtual method Apply that receives a
mesh, a criterion and a region as input, and refines
or improves the mesh until the criterion is fulfilled in
any triangle that intersects the region. The changes on
the mesh are stored in the input Mesh object. Again,
the Dummy algorithm subclass is used when non of
the other Lepp-based algorithms are required.

|| Apply(Mesh* , Criterio*, Region*)

|| Apply(Mesh* , Criterio*, Region*)

Lepp_based_algorithm

Delaunay_improvement_algorithm

|| Apply(Mesh* , Criterio*, Region*)

|| Apply(Mesh* , Criterio*, Region*)

Refinement_algorithm

Dummy_algorithmApproximate_improvement_algorithm
|| Apply(Mesh* , Criterio*, Region*)

Figure 2: Class diagram for the Lepp-based algorithms

The refinement or improvement criterion applied to a
mesh depends on the application problem. For exam-
ple, for finite element meshes, normally meshes with-
out very small angles are required. For finite volume
meshes, small angles are not a problem, but large an-
gles and vertices with a high number of edges con-
verging to them must be avoided. We have decided to
organize the refinement and improvement criteria in
the same type hierarchy because they both depend on
the user needs.

Figure 3 shows the class hierarchy diagram to model
criteria. The virtual method of the Criterion abstract
class is called Is fulfilled. This method receives as in-
put the mesh and the triangle that must be checked,
it evaluates the mesh against the user tolerance value
passed to the Criterion object when it was created,
and returns either true or false. The class Triangle
provides several methods to ask for triangle properties
related to the evaluation of different criteria. A crite-
rion is only evaluated if the intersection between the
triangle and the region shape is not empty.

Criterion

|| boolean Is_fulfilled(Mesh* , Triangle)

Minimum_angle

Minimum_angle(angle)
boolean Is_fulfilled(Mesh* , Triangle) boolean Is_fulfilled(Mesh* , Triangle)

Maximum_angle

boolean Is_fulfilled(Mesh* , Triangle)
Maximum_angle(angle)

Dummy_criterion

boolean Is_fulfilled(Mesh* , Triangle)

Dummy_criterion()

Maximum_longest_edge
Maximum_longest_edge(length)

Figure 3: Class diagram for refinement and improvement
criteria

The Final mesh algorithm and Region shape are also
abstract classes. They are not explicitly shown be-
cause they follow the same structure of the previous
ones. One of the subclasses of Final mesh algorithm is
the Non obtuse boundary algorithm. The subclasses
of Region shape are Point, Segment, Circle, Rectangle,
Polygon and Whole geometry. The last region shape
is very useful to efficiently apply the criteria over the

whole mesh: in this case, the method that checks if
the target triangle intersects the region always returns
true.

The relationships among the abstract classes can be
observed in Figure 4. We have not included the sub-
classes in order to keep the diagram simple and clear.
The Client is the class that models the object that con-
trols the order and the way user input requirements
are executed. The Client creates and coordinates the
objects related to the mesh generation steps, Mesh,
Criteria and Region shapes.

Mesh

Final_mesh_algorithm

Lepp_based_algorithm

Initial_mesh_algorithm
Criterion

Region_shape

Geometry

Client

Figure 4: Relationships among the abstract classes

3.3 Implementation

For the implementation of the Mesh class we have
reused and adapted a multidimensional C++ library
developed at the Integrated System Laboratories,
ETH-Zurich [24]. This library provides more func-
tionality than our applicaction needs; however, reusing
this implementation allowed us to use basic methods
of classes Triangle, Edge and Vertex and the iterators
over the triangles, edges, and vertices.

The tool’s user interface allows the user to select an ini-
tial mesh algorithm, improvement and/or refinement
criteria, region shapes and final mesh algorithms. An
example of an initialization of main objects (in C++)
that interact in our system is shown in Figure 5.

The Client object can execute each process separately
or all processes together by using the sequence shown
in Figure 6. Notice that this code is independent of
the object that was created associated to a specific
user requirement. The addition of new strategies, re-
gion shapes and criteria does not modify this source
code, because of the use of polymorphism and dynamic
binding.

By default, the Mesh and Criterion objects are empty
and the objects that represent the processes are the re-
spective dummy algorithms. This initialization looks
as shown in Figure 7.

Mesh* mesh = new Mesh();
Criterion* refinement criterion =

new Maximum longest edge(2);
Criterion* improvement criterion =

new Maximum angle(120);
Initial mesh algorithm* initial mesh algorithm =

new Delaunay algorithm();
Lepp based algorithm* refinement algorithm =

new Refinement algorithm();
Lepp based algorithm* improvement algorithm =

new Delaunay improvement algorithm();
Final mesh algorithm* final mesh algorithm =

new Non obtuse boundary algorithm();

Figure 5: Object initialization for generating a quality
non-obtuse boundary mesh

initial mesh algorithm->Apply(mesh,geometry);
while(There is a pair (refinement criterion,

region){
refinement algorithm->Apply(mesh,

refinement criterion,region);
}
while(There is a pair (improvement criterion,

region){
improvement algorithm->Apply(mesh,

improvement criterion,region);
}
final mesh algorithm->Apply(mesh);

Figure 6: General process

4. APPLICATION EXAMPLES

In order to illustrate the kind of meshes generated in
our system, Figure 8 shows the geometry of a comma,
Figure 9 shows an initial triangulation that satisfies
the Delaunay condition, and Figure 10 an improved
triangulation (using the Lepp-based algorithm) where
each triangle has a minimum angle greater than or
equal to 20◦.

The algorithms applied in this example are the Delau-
nay algorithm for generating the initial mesh, the De-
launay improvement algorithm for the improvement
of the mesh with the criterion Minimum angle, ap-
plying the algorithms to the Whole geometry. The
initialization of this example is shown in Figure 11.

Figure 12 shows a more complicated geometry with in-
terfaces. The input of our system was a Delaunay tri-
angulation with 3342 points shown in Figure 13. This
mesh was improved according to the following crite-
ria: a maximum angle γ = 120◦ (the largest angle of
each triangle on the mesh must be less than or equal to
120◦) and a maximum edge-vertex connectivity c = 10
(the maximum number of edges converging to a ver-

Mesh* mesh = new Mesh();
Criterion* criterion = new Dummy criterion();
Region shape region = new Whole geometry();
Initial mesh algorithm* = new Dummy algorithm();
Refinement algorithm* = new Dummy algorithm();
Improvement algorithm* = new Dummy algorithm();
final mesh algorithm* = new Dummy algorithm();

Figure 7: Mesh and algorithm default initialization

Figure 8: Geometry of example 1

Figure 9: Delaunay triangulation of example 1

Figure 10: Improved Delaunay triangulation of example
1 using the minimum angle criterion, ε = 20◦

Mesh* mesh = new Mesh();
Region shape region = new Whole geometry();
Criterion* criterion = new Minimum angle(20);
Initial mesh algorithm* =

new Delaunay algorithm();
Refinement algorithm* = new Dummy algorithm();
Improvement algorithm* =

new Delaunay improvement algorithm();
final mesh algorithm* = new Dummy algorithm();

Figure 11: Mesh and algorithm initialization for the
comma example

tex must be less than or equal to 10) and it is shown
in Figure 14. Finally, the mesh was passed through a
post-process algorithm to eliminate obtuse angles op-
posite to boundary or interface edges (Figure 15).

Figure 12: Geometry of example 2

Figure 13: Delaunay triangulation of a densified exam-
ple 2

Figure 14: Improved triangulation

Figure 15: Non obtuse boundary/interface mesh of ex-
ample 2

The algorithms applied in this example are the Dum-
my algorithm for the initial mesh provided that the
initial Delaunay mesh is already generated. The De-
launay improvement algorithm is used with the Max-
imum angle and the Maximum edge vertex connec-
tivity criteria applied over the whole geometry for
improving it. Finally, the Non obtuse boundary algo-
rithm was used as a post process. This initialization
is shown in Figure 16.

5. CONCLUSIONS

5.1 Results

The object-oriented design described in this paper and
applied in the examples has allowed us to build an ex-
tensible and easily configurable meshing tool. Each
new strategy, refinement/improvement criterion, or re-
gion shape, can be incorporated by (a) creating a new
subclass that implements the new characteristic or

Mesh* mesh = new Mesh();
Region shape region = new Whole geometry();
Criterion* criterion1 = new Maximum angle(120);
Criterion* criterion2 =

new Maximum edge vertex connectivity(10);
Initial mesh algorithm* = new Dummy algorithm();
Refinement algorithm* = new Dummy algorithm();
Improvement algorithm* =

new Delaunay improvement algorithm();
final mesh algorithm* =

new Non obtuse boundary algorithm();

Figure 16: Mesh and algorithm initialization for the com-
plex geometry example

strategy, (b) adding a new menu item in the user inter-
face to select it (if this strategy must be visible to the
user) and (c) creating the associated object when the
user selects the respective item. The rest of the code
remains unchanged. The unique exception might hap-
pen when adding a new refinement or improvement cri-
terion, because its computation might require to add
a new method in the Triangle class for calculating the
value associated with the new criterion metric.

The meshing tool presented in Section 3 can be
seen as a software product line, where the shared
architecture is the one shown in Figure 4, and
the reused components are the extensible class hi-
erarchies of Figures 1, 2 and 3. Combining dif-
ferent instances of each class hierarchy we can
obtain different particular tools. Combining the
Delaunay mesh algorithm, Refinement algorithm and
Delaunay improvement algorithm, with the Minimun-
angle criterion, we would get a finite element mesh-
ing tool. Instead, if we change the criterion for the
Maximum angle and add a postprocess Non obtuse-
boundary algorithm, we have a finite volume method
tool.

5.2 Discussion

Object-orientation has raised the level of abstraction
for developing complex software systems. Encapsula-
tion and inheritance have been extensively used for
meshing tools design. However, the possibility of
building even more complex software brought newer
problems: object-orientation by itself is not enough to
deal with very high complexity software. Productiv-
ity and quality have become also very important for
meshing tool development as a commercial activity.

Object-orientation has promised to allow systems to
be more easily maintained and flexible for evolution.
However, software is not flexible independently of the
change we want to perform; software can be more or

less flexible for some particular changes. The SPL ap-
proach allows us to think about possible products that
will be needed in the future and develop the whole
SPL accordingly. All products in the SPL share the
software architecture and the properties it enforces,
and already implemented software components can be
reused according to this architecture.

Encapsulation and polymorphism, basic concepts of
object orientation, are used for promoting interchange-
ability, i.e. an implementation can be changed by an-
other whenever it satisfies its interface. This feature
allows us to extend our current tool framework to be
able to deal with 3D meshes only by changing the in-
ternal structure of the mesh object and providing the
appropriate algorithms for processing this 3D mesh,
but still preserving the general tool architecture.

According to our experience, the SPL approach fits
well with the planning and development of complex
meshing tools. On the other hand, the high level of
abstraction required has helped us to identify critical
issues, and to appropriately deal with them. In the de-
velopment of meshing tools, we take advantage of early
definition of the architecture for setting object inter-
faces so that their implementation can be achieved in
parallel. Thus, the SPL approach can also enhance
the development process.

5.3 Ongoing Work

Currently, our mesh tool only contains criteria related
to the geometry of the triangles that are useful for fi-
nite or control volume methods, but in the near future,
we are going to add criteria related to other applica-
tions, in particular for the generation of triangulations
to represent images. Note that we do not need to add
new meshing strategies for this application, we just
need to add a new refinement criterion that contains
the image. The part of the image under the target tri-
angle will be used to decide if the triangle will be re-
fined or not. In a similar way, criteria related with the
error in the numerical solution or related to the phys-
ical values of the domain can also be added. We have
implemented 2D tools and at present we are working
in the implementation of 3D tools. Parallel implemen-
tation and the use of data base technologies will be
also considered in the future. All these similar but
different meshing tools form our SPL, and component
reuse will be fundamental for the quality of the results
and the productivity of the development process.

ACKNOWLEDGEMENTS

We would like to thank Bruce Simpson (U. Waterloo)
for lending us the geometry of example 1 and to Jens
Krause (ISE-AG, ETH-Zurich) for example 2. The

work of Nancy Hitschfeld was partially supported by
Fondecyt Project N◦ 1030672.

References

[1] Clements P., Northrop L.M. Software Product
Lines: Practices and Patterns. Addison Wesley,
first edn., August 2001

[2] Babuska I., Zienkiewicz O.C., Gago J.,
de A. Oliveira E.R. Accuracy estimates and
adaptive refinements in finite element computa-
tions. John Wiley-Sons, 1986

[3] Bern M., Eppstein D. Mesh Generation and Op-
timal Triangulation. Palo Alto Research Center.
Xerox, March 1992

[4] Rivara M.C. “Design and Data Structure of
Fully Adaptive Multigrid, Finite-Element Soft-
ware.” ACM Transactions on Mathematical Soft-
ware, vol. 10, no. 3, 242–264, September 1984

[5] Bruaset A., Langtangen H. “A comprehensive
set of tools for solving partial differential equa-
tions; Diffpack.”, 1996. citeseer.nj.nec.com-
/bruaset96comprehensive.html

[6] Merazzi S., Gerteisen E., Mezentsev A. “A
generic CAD-Mesh interface.” Proceedings of the
9th Annual International Meshing Roundtable,
pp. 361–370. New Orleans, U.S.A., October 2-
5,2000

[7] Panthaki M., Sahu R., Gerstle W. “An ob-
ject oriented virtual geometry interface.” Pro-
ceedings of the 6th Annual International Meshing
Roundtable, pp. 67–81. Park City, U.S.A., 1997

[8] Simpson R.B. “Isolating geometry in mesh gener-
ation.” Proc. of the 8th Int. Meshing Roundtable,
pp. 45–54. October 1999

[9] Tautges T.J. “The common geometry module
(CGM): A generic, extensible, geometry inter-
face.” Proceedings of the 9th Annual International
Meshing Roundtable, pp. 337–347. New Orleans,
U.S.A., October 2-5,2000

[10] Mobley A.V., Tristano J.R., Hawkings C.M. “An
object oriented design for mesh generation and
operation algorithms.” Proceedings of the 10th
Annual International Meshing Roundtable. Cali-
fornia, U.S.A., October 7-10, 2001

[11] Fabri A. “CGAL- The computational Geometry
algorithm library.” Proceedings of the 10th An-
nual International Meshing Roundtable. Califor-
nia, U.S.A., October 7-10, 2001

[12] ElSheikh A.H., Smith S., Chidiac S.E. “Relia-
bility of Mesh Generation Software.” Proceedings
of the 7th United States Congress on Computa-
tional Mechanics. U.S. Association for Compu-
tational Mechanics, Albuquerque, New Mexico,
USA, 2003

[13] Rivara M.C., Hitschfeld N., Simpson R.B. “Ter-
minal edges Delaunay (Small Angle Based) Al-
gorithm for the Quality Triangulation Problem.”
Computer-Aided Design, vol. 33, 263–277, 2001

[14] Rivara M.C. “New Longest-Edge Algorithms for
the Refinement and/or Improvement of Unstruc-
tured Triangulations.” International Journal for
Numerical Methods in Engineering, vol. 40, 3313–
3324, 1997

[15] Hitschfeld N., Rivara M.C. “Automatic Con-
struction of Non-obtuse Boundary and/or Inter-
face Delaunay Triangulations for Control Volume
Methods.” International Journal for Numerical
Methods in Engineering, vol. 55, 803–816, 2002

[16] Hitschfeld N., Villablanca L., Krause J., Rivara
M.C. “Improving the Quality of meshes for the
simulation of semiconductor devices usin Lepp-
based algorithms.” International Journal for Nu-
merical Methods in Engineering, vol. 58, 333–347,
2003

[17] Simpson R.B., Hitschfeld N., Rivara M.C. “Ap-
proximate Quality Mesh Generation.” Engineer-
ing with Computers, vol. 17, 287–298, 2001

[18] Hitschfeld N., Conti P., Fichtner W. “Mixed El-
ements Trees: A Generalization of Modified Oc-
trees for the Generation of Meshes for the Simu-
lation of Complex 3-D Semiconductor Devices.”
IEEE Transactions on CAD/ICAS, vol. 12, 1714–
1725, November 1993

[19] Bosch J. Design and Use of Software Architec-
tures. Adopting and Evolving a Product Line Ap-
proach. Addison Wesley, first edn., May 2000

[20] Weiss D.M., Lai C.T.R. Software Product-Line
Engineering: A Family Based Software Develop-
ment Process. Addison-Wesley Pub Co, August
1999

[21] Halbert D.C., O’Brien P.D. “Using Types and
Inheritance in Object-Oriented Programming.”
IEEE Software, vol. 5, no. 4, 71–79, September
1987

[22] Meyer B. Object-Oriented Software Construction.
Prentice Hall, second edn., 1997

[23] Gamma E., Helm R., Hohnson R., Vlissides H.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, 1995

[24] Villablanca L. Mesh Generation Algorithms for
Three-Dimensional Semiconductor Process Simu-
lation. Ph.D. thesis, ETH Zürich, Series in Micro-
electronics, Vol. 97, 2000. PhD thesis published
by Hartung-Gorre Verlag, Konstanz, Germany

